Module: Database Models 251

Module name:	Database Models 251			
Code:	DBM251			
NQF level:	5			
Type:	Fundamental – Diploma in Information Technology (Software			
	Development stream)			
Contact Time:	30 hours			
Structured time:	6 hours			
Self-directed time:	34 hours			
Notional hours:	70 hours			
Credits:	7			
Prerequisites:	DBD151			

Purpose

The course covers the evolution of data models and the building blocks of data models. The course will look at business rules and how they influence database design. Classifying data models by level of abstraction will be introduced. Students will be exposed to different database platforms that support the various data models discussed during the course.

Outcomes

Upon successful completion of this module, the student will be able to:

- Demonstrate an informed understanding of the core areas of various database models, and an informed understanding of the key terms, concepts, facts, general principles, rules, and theories thereof.
- Select and apply standard methods, procedures, or techniques within a database design, and to plan and manage an implementation process within a well-defined, familiar, and supported environment.
- Identify, evaluate and solve defined, routine, and new problems within a familiar context, and to apply solutions based on relevant evidence and procedures or other forms of explanation appropriate to the selection of a database model, demonstrating an understanding of the consequences.

Assessment

- Continuous evaluation of theoretical work through written assignments, a formative, and a summative test.
- Final assessment through a written examination.

Teaching and Learning

Learning materials

Prescribed Book

Database Modelling, (2018), IT without frontiers.

Additional Material

Taylor, A.G. (2011). *SQL All-In-One for Dummies*. John Wiley & Sons Ltd.(ISBN:9780470929964)

Learning activities

The teaching approach will use a combination of exercises, theory presentations and whole group discussions. It is a collaborative model with a practical approach, with two mandatory assignments which must be completed during the module.

Notional learning hours

Activity Lecture Formative feedback	Units	Contact Time 27.0 3.0	Structured Time	Self-Directed Time 13.0
Project Assignment Test	2		4.0	6.0 8.0
Exam	1		2.0	7.0
	_	30.0	6.0	34.0

Syllabus

- The Importance of Data Models
- Hierarchical Model
- Network Model
- Relational Model
- Entity Relational Model
- Object-Orientated Model
- Document-Orientated Model
- Database Models and the Internet
- Degrees of data abstraction