
Belgium Campus Winter School



Delphi - OOP
V. Pretorius



• Class declaration
• Object Instantiation
• Encapsulation
• Constructors
• Method Overloading
• Accessors, Mutators

Lesson objectives

Belgium Campus Spring School



Prior Knowledge
In order to complete the section on Object Oriented Programming, 
prior knowledge about the following is required:
◦ Scope of variables
◦ Control structures
◦ Loops
◦ Functions
◦ Procedures
◦ Arrays
◦ Files

Back to Index4 Belgium Campus Spring School

http://slide2.xml


Classes
The class groups together values that logically belong 
together in a structure like a new data type.
A class is made up of:

Fields (private variables that contain data values)
Methods (procedures and functions)

The class is not a variable – you need to declare an 
object of that type.

Back to Index5 Belgium Campus Spring School

http://slide2.xml


Objects
Many objects can be created from 
the same class, just like many 
variables can be declared of the 
same data type.
An object created from a class is 
called an instance of the class.
One object is a bundle of variables 
and related functions and 
procedures.

Back to Index6 Belgium Campus Spring School

http://slide2.xml


4 Pillars of OOP
Encapsulation
Abstraction
Polymorphism
Inheritance

Back to Index7 Belgium Campus Spring School

http://slide2.xml


Encapsulation
enCAPSULat
e

Back to Index8 Belgium Campus Spring School

Private Field

(ingredients)
variables

Behavior

(what it does)
Functions & 
procedures

Class
(the recipe of how 
to make a 
capsule)

Object
(one capsule 
created by using the 
class)

A class encapsulates the fields and 
methods. This means that you do not 
have direct access to these variables. 
They are PRIVATE. You can change or 
display the values of fields, only by 
using the methods of the class.

Accessor methods – functions 
to get or access data in the 
object.

Mutators methods –
procedures to set or change 
private data in the object.

http://slide2.xml


Default Constructor
Type
TBox = class(Tobject)
Private
fL, fB, fH: integer;
Public
Constructor Create;
Begin

fL := 0;
fB := 0;
fH := 0;

End;

Back to Index9 Belgium Campus Spring School

Default Constructor: Constructor Create;
You must declare a variable of the Class type first.
Then you have to use a constructor to create an object and 
set up the fields and methods of an object so that it is ready 
for use.
You can set all strings to empty fields and numbers to 0 or set 
the values to any other default values.

Class

Application 
Unit

Procedure TForm1.FormCreate(Sender: 
TObject);
Var CerealBox: TBox;
Begin

// Instantiate
CerealBox := TBox.create;

End;

CerealBox
Private
fL := 0;
fB := 0;
fH := 0;
Public
Function GetAge: 
integer;

Object

http://slide2.xml


Parameterized Constructor
Type
TBox = class(Tobject)
Private
fL, fB, fH: integer;
Public
Constructor Create(a, b, c: integer);
Begin

fL := a;
fB := b;
fH := c;

End;

Back to Index10 Belgium Campus Spring School

Parameterized Constructor: Constructor Create(L, B, H: 
real);
You can provide your constructor with parameters to 
initialize fields according to input values.

Class

Application 
Unit

Procedure TForm1.FormCreate(Sender: 
TObject);
Var CerealBox: TBox;

x, y, z: integer;
Begin

x := edt1.text; y := edt2.text; z := edt3.text;
CerealBox := TBox.create(x, y, z);

End;

CerealBox
Private
fL := x;
fB := y;
fH := z;
Public
Function GetAge: 
integer;

Object

http://slide2.xml


Overloading

Back to Index11 Belgium Campus Spring School

When you define two constructors, functions or procedures using the 
same name, with different parameters, you must use overload;
◦ Constructor Create; overload;
◦ Constructor Create(x, y, z: integer); overload;

By checking the parameters, the compiler determines which of the 
routines you are calling.

http://slide2.xml


Procedure btncall.Onclick)
Var
CerealBox :  Tstudent;
Begin
//instantiate object
CerealBox := TBox.create(5,6,9);

//Function call
lblout.caption
:=inttostr(CerealBox.GetHeight);

Accessors 
The only way to access the private variables in the object, is to make use of 
functions or procedures (accessor methods) to access the private variables 
and make it available in the application. 

CerealBox
Private
fL= 5, fL= 6

fH=  9;
Implementation
Function Getheight: integer;
Begin
Result:= fH
End;

Object Type
TBox = class(Tobject)
Private
fL,fB,fH : integer; …….
Implementation
Function GetHeight: integer;
Begin
Result:= fH
End;

Class

Application
Unit

9



Mutators

You can change/calculate the 
value of private variables after the 
object was instantiated, using 
mutator procedures

CerealBox
Private
fL := 0; fB := 0;  fH := 0;
.......
Implementation
Procedure setAll   (a,b,c: integer);
Begin
fL := a; fB := b; fH := c;
End  etc

Object Type TBox = class(Tobject)
Private  fL,fB, fH : integer;
.......
Implementation
Procedure setAll   (a,b,c: integer);
Begin
fL := a; fB := b; fH := c;
End;
Etc.......

Class

Procedure TFrm1.FormCreate(Sender: TObject); 
Var  CerealBox :  Tstudent;  x,y,z : integer;
Begin
CerealBox := Tstudent.create;
x := edt1.text; y := edt2.text; z := edt3.text;

CerealBox.setall ( x, y, z );

Application
Unit

456

To change the private variables in the object, you make use of procedures 
(mutator methods)  to  transfer the new values to the private variables



Example of a question

14

Private 
variables
fH,fL,fBBehaviour

Constructor Create(h,b,l)
Function GetVolume
Function toString

OBJECT   

● Create a class called Tbox with three private variables fH, fL and fB,
– a parameterised constructor
– a function getVolume to calculate the volume of the box and 
– a function toString to display the of the box in one line .

● Write a program to 
– create an object and 
– display the Height, Length and Breadth as well as the volume 



Steps to create class TBox

15

1. Create a new unit (not an application and 
not a form).  

2. Save the new unit with the prefix cls (in this 
case clsBox) in the a new folder with an 
appropriate name, say “Box program” 

3. Use “file save as”  do not edit the name in the 
unit



Steps to create a class e.g. TBox

4. Under the word Interface , 
– Add uses sysutils 
– Add the word ” type”
– With your cursor after the word “type”, use ctrl j to generate the skeleton code for 

a new class 
– Use the prefix f and add attributes

under private (fL, fB, fH). (This encapsulates  variables 
and protects the values against 
unintentional modification)

– Delete published and protected

16



Steps to create a class e.g. TBox

5. Under public in the interface (to make methods available in other units that use the 
class) 

– Add the constructor, function/procedure  headings 
– Keep your cursor in the public section and press ctrl-shift-C to put the skeleton 

code for all subprograms in the implementation section.
– Note that TBox . is added 

in front of every function 
and procedure name

17



18

Steps to create a class e.g. TBox

6.  Complete the code for the subprograms
– The constructor initialises the private variables 
– A function always has a statement result := 



Steps to create a class TBox

7. The ToString Function is generally used to generate a string representation of all the 
fields of an object as one string so that they can be displayed easily.

E.g.  function TBox.ToString: string;
Begin   
Result := inttostr(fB)+#9

+inttostr(fH)+#9
+inttostr(fL)+#9
+inttostr(GetVolume);

19



20

Steps to use your class Tbox

Make a new application
1. save the project and unit in the same folder as the 

class
2. Add the Name of the unit (clsBox for the Box class), to 

the Uses section in the application
3. Define a variable MyBox of your class type under 

private in the application



21

Steps to use your class TBox

4. Create the user interface - add input components
5. Declare variables and assign input to the variables
6. Create (instantiate) the object using the constructor: 

Mybox := Tbox.create(b,h,l)
– This is often done in 

the OnCreate event, 
but if you use input 
from edits, you have to 
do it on a button.



Steps to use your class TBox

7. Call the function(s) of the object to display the values of 
attributes or calculated values based on the private 
variables.  

8. In the form FormClose event, free the object:  mybox.free
– This will free the memory that was occupied by the object to prevent 

running out of memory in large programs 

● Note:
– All method calls have the format:
Objectname.methodname(parameters)
– Functions are called as part of

other statements and procedure calls
are statements on their own. 

22



Arrays of objects

– In an array of objects each object can 
have different values for the fields, but 
all the objects are of the same type. 

– E.g MyBoxes: array[1..5] of TBox;

23 23

1 fL = 8
fB = 3
fH = 4

2 fL = 7
fB = 5
fH = 6

3 fL = 7
fB = 3
fH = 1

4 fL = 12
fB = 8
fH = 4

5 fL = 9
fB = 3
fH = 4



Steps to re-use your class TBox for an array of 
Objects

Make a new application
1. Save the project and unit in the same folder as the class
2. Add clsBox to the Uses section in the application
3. Define a variable Myboxes :  array[1..5] of Tbox of your 

class type under private in the application

24



Steps to re-use your class TBox for an array of 
Objects

4. Create the user interface - add input components
5. Declare variables
6. Each object in the array must be created:  

You can use a for loop   
E.g.    For i := 1 to 5 do

MyBoxes[i] := TBox.Create;
Or  you can create the objects using values from a text file:

index := 0;
while not eof(tf) and (index < 5)  do  begin

readln(tf,line);  …....//separate the values for iBreadth,iHeight and ilength 
inc(index);
myboxes[index] := TBox.Create(iBreadth,iHeight,ilength);
end;

25



Animation: creating an array of objects using a text 
file

● var tf : textfile;
● line : string;
● ilength, iBreadth,iHeight, i : integer;
● begin
● assignfile(tf,'data.txt');
● reset(tf);
● index := 0;
● while not eof(tf) and (index < 5)  do
● begin
● readln(tf,line);
● iBreadth := strtoint(copy(line,1,pos(',',line)-1));
● delete(line,1,pos(',',line));
● iHeight := strtoint(copy(line,1,pos(',',line)-1));
● delete(line,1,pos(',',line));
● ilength :=  strtoint(line);
● inc(index);
● myboxes[index] := TBox.Create(iBreadth,iHeight,ilength);
● end;
● closefile(tf);
●

Declare the 
local variables

Link to the text 
file
Loop through text file, 
without exceeding  
size of array

Read one line from 
file into variable line Line                

iBreadth                
iHeight                 
ilength                 

myBoxes

1 fB=8
fH= 3
fL=4

2

3

4

5

Index = 0           Index = 1           

fB=7
fH= 5
fL=6

fB=7
fH= 3
fL=1

fB=12
fH= 8
fL=4
fB=9
fH= 3
fL=4

Non local variables
myboxes : array[1..5] of TBox; index : integer



Display an array of Objects and free all objects in the 
array

7. Call the functions/procedures of the class to calculate and display the values of 
variables.  You need a for loop to display a value for all the objects in the array

e.g
redout.Lines.Add('B'+#9+'H'+#9+'L'+#9+'Volume');  //headings
for i := 1 to 5 do
redout.Lines.Add(myboxes[i].tostring)
8. In the form OnClose event, free  

all the objects:
e.g.  For i := 1 to 5 do

MyBoxes[i].free

27



Sorting an array of objects

• var j, k : integer;
• Temp : TBox;
• begin
• for j := 1 to index -1do
• for k := j + 1 to index do
• if myboxes[j]).Getvolume< myboxes[k].GetVolume   
• then  begin
• Temp := myboxes[j];
• myboxes[j] := myboxes[k];
• myboxes[k] := Temp;
• end;

28

Use get functions to 
access  private fields 
in objects you have  

to compare

Swop two 
objects in the 

array if the 
condition is true

Index refers to the 
number of elements 
in the array

the temporary 
variable to swop two 
values is a single 
object of the same 
class 


